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ABSTRACT
COSPAR requirements that the probability of spacecraft contamination not
exceed ]0—4 demand an extrapolation of empirical data through four population
decades beyond the range of possible measurement. The inherent danaers in

such extrapolation prompts the introduction of maximum rationality in the

models used. In this report, rationality is introduced through chemical reaction

kinetics. The model is tested against empirical data; techniques for
computation are investigated.
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1. Introduction. Observed nonlogarithmic survival of microbial populations
exposed to a lethal thermal environment is often attributed to either
sampling errors or population inhomogeniety [1]. If these explanations

are valid, then sterilization cycles for various applications can be set

by extrapolation of empirical data to the desired probability of contamina-
tion M2]. If nonlogarithmic survival is an intrinsic function of the
organism involved, then serious doubts arise concerning the efficacy of
this procedure. Qur particular interest is in spacecraft sterilization
cycles and the tentative COSPAR 3] objective of keepina the probability

of a single viable organism aboard a vehicle intended for planetary landina
or atmospheric penetration below 10'4[4].

There are two distrubing aspects in the application of the logarithmic
model in the planetary quarantine program. One, it is consistent with only
one of the four types of survivor curves described by Schmidt [5] for the
thermal inactivation of microorganisms; and, two, it needs a rational basis.
The second of these is actually the most disturbina since empirical data
must be extrapolated four decades beyond the range of measurability to obtain
a contamination probability less than 10'4. Lucas €7 points out that
“empirical models usually lead to bad predictions for points --:not close
to the reqgion of the data used to fit the model. On the other hand, rational
models often predict very well for points ---that are far from the experi-
mental region."

This is a report on the derivation of a rational model for determining

probability of microbial survival based on reaction kinetics. Using kinetics
as observed in various oraanic reactions, the four types of survival curves
described by Schmidt [5] may be obtained. This model provides a rational

basis for the logarithmic model, but if the sterilization kinetics are of



a form found in the denaturation of protein, then probability of contamina-
tion will be qreater than indicated from logarithmic extrapolation of
empirical data.

Since many researchers have selected Bacillus subtilis var. niger

as a standard organism for thermal inactivation studies, we qgive a formula-
tion for survivors as a function of time and temperature which compares
quite favorably with the results of Silverman [13] for dry heat sterilization

of this oraanism.




2. Mathematical Model. Our initial assumptions are:
(1) The population is homogeneous.
(ii) Microbial deaths are independent.
(iii) There is no reproduction,
Under these conditions, the expected population, E[.7, at time t is qiven

by

Erx(t)] = x()p(t) (1)

where p(t) is an organisms's probability of surviving to time t and X(0)
is the initial population.

We next assume that microbial deaths in a thermal environment are the
result of chemical reactions and that these reactions result in the
inactivation of biologically vital molecular types. Each molecular type
may contain more than one molecule and the cell is considered functional
as regards the activity performed by a type as long as any one molecule of
that type is still active. The cell is reaarded as dead (sterile) if it
is no longer functional relative to any one of these types.

Suppose there are N types and let nys i=1, ..., Ndenote the number
of molecules belonging to the ith type. Let qi(t) be the probability that
a given molecule of type i is active at time t. Then the probability that

the cell contains at least one active type i molecule 1is aiven by

N
1= [1-0;(0)]



so that the probability that it is still functional in the N vital areas

is qgiven by

Equation 2 also aives the reliability of a device of N components with a
redundancy of n; in the ith component with qi(t) the probability that
a structure of the ith type is functional at time t.

We observe that equation 2 allows us to account for N different death
mechanisms. If the cell is particularly vulnerable to thermal inactivation
of the ith molecular type, the ith factor will dominate the determination
of p(t). In this case, one may wish to use only the ith factor in equation 2
for a conservative estimate of p(t).

We would expect the molecules of a particular type to be extremely
complex, for example, the protein of the cell wall or perhaps the nucleic
acid, DNA. The number, n.s of molecules of the ith type may vary qreatly.

A value of one to three seems appropriate for DNA, while ten thousand might
be used for other types [7].

To find values for qi(t), we examine the kinetics of inactivation.

Since we do not know the specific reactions,we cannot expect to proceed via
the stoichiometry. However, we can compare survival curves resulting from
inactivations of different orders. Protein denaturation, for example,is
often of first order but the order may change with time and three-halves
orders have been observed [8]. For the purpose of providing a kinetic basis
for nonlogarithmic survival, consideration of first and second order

reactions will suffice.



If the reaction inactivating the ith molecular type is first order, then
from an initial concentration of ci(O) the rate of chanqge of concentration

is given, where ci(t) is concentration at time t, by

c%(t) = -kc.(t). (3)

If Ci(o) is large, we would expect the probability that a molecule is

active at time t to be ci(t)/ci(o). It foliows from equation 3 that

ci(t) = ci(O) exp [-kt]. Thus, ci(t)/ci(o) = exp [-kt]. Intuitively, we
take
q.(t) = exp [-kt] (4)

in case the inactivating reaction is first order.

We note that for the 1st order model, N = 1 and ny = 1 equation 2 will
give the familiar logarithmic model.

We may approach the determination of qi(t) in a less intuitive manner
by again drawing an analogy to reliability theory [9]. Let g(t) denote the
conditional failure rate defined as follows:

g(t)dt is the probability that a given system fails (molecule is

inactivated) in the time interval (t,t+dt), assuming it did not

fail (was not inactivated) up to time t.

Let X be a random variable equal to the time of failure of the system and

let F be its distribution. Then,



F(t) =1 - exp[-ft R(s)ds].
0

We assume g(t)dt is the concentration change in the interval (t,t+dt)

divided by the concentration at t, i.e.

ci(t)—ci(t+dt)
g(t)dt = ci(t)

Letting dt -~ 0, we get

Thus

exp [- /% g(s)ds] = exp Infc, (t)/c,(0)1,
0

so that

F(t) =1 - ci(t)/ci(O).

Hence,



Strictly speaking, ci(t) is an expected concentration.

Since equation 5 was derived independently of reaction order, it will

be used for all orders. Thus,for a second order reaction, i.e.

ci(t) = - K[cy(t)1%, we set

1

q;(t) 1/[1+c; (0)kt]. (6)

In equation 6 we set the initial concentration equal to L the number of

molecules of the ith type, i.e., concentration = molec./cell.
A reaction of three-halves order has been observed by Lauffer [107] in
the thermal destruction of Influenza A virus hemagglutinin. For this

reaction

¢ (t) = - klc(t)1%/?

so that

c(t) = c(0)/[2kt/e(0)+17%.

For this case we set



9 (t) = 1/[2kt/el0)+17°. (7)

In Figure 1 we show typical curves for p(t) obtained by use of
equations 5 and 7 in equation 3 for various values of N and n,. This is
equivalent to plotting E[X(t)] for an initial population of 1. Curve A
is for N = 1, a first order inactivation, and ny = 3. Curve B is for
N = 2, ny = 1, n, = 1, the first molecular type inactivated by a first
order reaction, and the second type inactivated by a second order
reaction. Curve C is for N =1, ny = 1, and the inactivation by a second
order reaction. If we set N =1, n, = 1, and inactivate by a first order
reaction we obtain the logarithmic curve, Curve D.

Since empirical data exists, Figure 2, [11] that is similar to Curve C,
we investigate the consequence of extrapolating such data if p(t) fits the
model of equation 3 and the inactivating mechanism is a second order
reaction. For demonstration purposes, we use only the simplest assumption.

Let N =1, n, = 1, and et qi(t) be aiven by equation 6. Then
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In qi(t) = In 1 - In[1+kt] so that
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f'(t) = - k/1+kt.

Therefore, if ty < tz,then f'(t]) < f'(tz) so that a logarithmic extrapola-
tion of f(t), i.e., with a constant slope, will be below f(t).

This could have some far reaching consequences for the planetary
quarantine proaram if microbial death results only from a 2nd order reaction.
However, it seems more likely that a collection of mechanisms is involved
and that data such as in Figure 2 simply shows a domipant mechanism.

Fiaqure 3 gives typical data for Bacillus subtilis var. niger from

the laboratory of Angelotti, et.al. [12]. We observe that this data is not
compatible with any of the curve types in Figure 1. Fiqure 4, shows a curve
generated by the model of equation 2 under the assumption that N molecules

are being destroyed hy competing 1st and 2nd order reactions with probabilities
of, reaction orders also functions of time. For Figure 4, we simply set,

see Appendix,

a5(t) = [hy/Ckyvion,) Tug (£)4Tkony/ (kg thony ) T4 (1) (8)

where k] and k2

values of qi(t) from equations 4 and 6,respectively.

are the reaction rate constants and ui(t) and vi(t) are the

More investigation is needed in this area and we simply present equation %

because of the similarity of these results to those of Angelotti, et.al.

1



Remarks (a) Values for qi(t) can be assigned via reliability theory. For
example, the assumption that inactivation is the consequence of a first order
reaction is equivalent to the assumption that the failure rate for the sub-
systems of the ith system is constant. We have chosen to concentrate on the
kinetic approach because of the desirability of relating the model to tempera-

ture as a function of time. The Arrhenius equation,
k = AT"exp[-E_/RT]

where k is the reaction rate constant; A, Ea, and R are constants; T is
temperature in 0K; and n may have any value dictated by experiment, provides
the desired relationship.

(b) An adequate lanquage for a report of this nature is not available.
For example, an outside observer will be unable to distinguish, from an
examination of the shape of survivor curves, between the case of N = 1,n] =]
and the case N = 100, n; = 1, 1 =1,...,100. Thus, perhaps the extensive use
of the word molecule is unfortunate. However, a better term for coverina
both cases is not available.

Also, concentration is not used in the usual sense. We simply

view concentration as molecules per cell,and all reactions occur in the
individual cells.

(c) Our last remark is related to the application of reaction rates
to reactions of low concentration. The assumption is that reactions in the
“small" are much like reactions in the “large". Readers interested in investi-

gating this area more closely could start with the Jachimowski thesis [14].

12



3. Applications. For this section we assume that Bacillus subtilis var.

niger is a microbial standard of comparison and that the spacecraft
sterilization environment is approximately that encountered by the micro-
organisms in the ovens used by Silverman [13]. The curves from Silverman's
report which we shall use are given in Fiqures 5 and 6.

First we observe that Silverman's data is convex so that if our model
is to fit this data it will be with a first order reaction (Curve A, Fiqure 1).
Experimentation at the computer console, G.E. 235, led to the conclusion
that if this model is to fit Silverman's data it will be under the assumption
that two vital molecules are being deactivated in each cell by a first order

1

reaction. A reaction rate constant of .55 hr. ' agives the fit illustrated

in Figure 5 to Silverman's 106° data and a rate constant of 2.65 hr.']
gives the fit to Silverman's 120° data illustrated in Figure 6. We next
turn to the Arrhenius equation which relates reaction rate constants to

temperature. If rate constants k] and k? are known for temperatures T]

and T2, in OK, then the rate constant k for temperature T,in oK,is given by

k= expl(1/T-1/T)(In ky=Tn k) (1/T,=1/T1)41n Ky 1, (%)

1. and 120°C, 2.65 hr.”],

Using the rate constants for 106°C, .55 hr.~
in  equation 9, we get a constant of 12.49+ hr.'] for T = 408°K = 135°C.
A comparison of Silverman's 135°C data and the curve resulting from this
constant is given in Fiqure 6. We thus conclude that an accurate prediction
of survivors can be made for Silverman's laboratory conditions.

Given a temperature T in %, k is determined from equation 9 with

T, = 1064273, T, = 1204273, k

1 2 1
at time t from an initial population X(0) is aiven by

= .55, and k2 = 2.65. Then expected survivors

13



EFX(t)] = X(0)(1-T1-exp(-kt)]°}. (10)

Some workers in the planetary quarantine program are already using the
loqarithmic model; however, the proqgram modifications required to convert
to equation 10 are not prohibitive. The proaram, in G. E. Basic, used in
this study is aiven in the Appendix.

At this time, our available data is for constant temperature conditions.
Since a non-constant temperature profile is to be expected durina spacecraft
sterilization, we investigate numerical methods, based on the general model
of equation 2, for predictina the probability of contamination when the lethal
temperature varies with time. PRecall that the logarithmic model is a special
case of equation 2 so that the techniques discussed here are applicable
even if equation 10 is not adopted.

Since the function varyinag with time will be the probability of single

soore survival,we beain with equation 5, i.e.

From this it follows that

14



Assuming first order kinetics for Bacillus subtilis var. niger, we have

ci(t) = -k(t,T(t))e;(t) (1)

where k(t,T(t)) is the reaction rate constant which is a function of time
and temperature, T, in degrees Kelvin.
Suppose we hypothesize a temperature profile T(t). It follows from

equation 5 and 11 that

a;(t) = -k(t,T(t))a,(t). (12)

Thus, knowing T(t) we may solve for k(t,T(t)) by equation 10 and our problem
becomes that of solving the differential equation 12.

We know that qi(O) = 1. Therefore, an approximate solution can be
obtained by simple difference methods. For example, let h be the step size
for approximation and let qi(hj) = qj, i.e., the value of Q; at the jth

step will be denoted by qj. Then, forward differencing gives

Q'+]-q'

—d = k(e T(8)a5 (13)
and backward differencing gives

Q'+]-qj

—H—t = k(e T()a;. (14)

15



Solving equations 13 and 14 for q].+1 and averaging yields

- 2

2-h

501 [k(E,T(£)) 120/ (T (£,T(2))T) (15)

Equation 15 then, provides a simnle step by step procedure for findina
qi(t) for varying temperatures.
In Fiqure 7, we show p(t) for different temperature profiles and for

both the logarithmic assumption and equation 10. Since the reaction rate

1 1

constants obtained by Silverman, .505 hr.”' at 106°C, 2.88 hr.”' at 120°C,

1 at 135°C do not vary areatly from the ones we obtained from

nis data and equation 10, we have used our rate constants, .55 hr.'] at

1 1

and 18.35 hr.”

1n6°¢C, 2.65 hr.”' at 120°C, and 12.5 hr.”' at 135°C, for the logarithmic

case. Curve A shows p(t) for the loagarithmic case and a linear heat up time of
& hrs. from 100°C to 135° and constant thereafter, Curve A' has the same
temperature profile as curve A but we used equation 10 instead of the logarith-
mic assumption. Curves B and B' are for the two mathematical models used for
A and A' but the temperature profile is for 4 hrs. from 100° to 135°.

The program used to generate the curves of Figure 9 is shown in the
Appendix. In all cases, qi(t) was approximated by equation 15. The ease
of computation is obvious from the program.

In the computation of qi(t), one can easily use equation 12 with
Runge-Kutta methods with no appreciable additions to the complexity. As
an alternative one could use inteqration to obtain from equation 12 the

equation

16



a;(t) = expl~ J* k(s,T(s))ds].
0

However, it may be simpler to use equation 15 or a Runge-Kutta method.

Runge-Kutta program is given in the Appendix.

A

17
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FIGUPE 1. Expected survivors for various assumptions regardina number of
vital molecular types and inactivation orders. Curve A: 1st order inactiva-
tion of 3 molecules of one type. Curve B: 2nd order inactivation of 3
molecules. Curve C: 1st order inactivation of 1 molecule, ?nd order

inactivation of 1 molecule. Curve D: 1st order inactivation of 1 molecule.
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APPENDIX

PROGRAM FOR COMPUTING PROBABILITY OF SINGLE SPORE SURVIVAL TO TIME X
UNDER LETHAL TEMPERATURE T°K. THE PROGRAM IS IN G.E.BASIC.

S5LETR=2

6REM R=NUMBER OF MOLEC.TO BE DEACTIVATED
10LETT=398
15LETW=(LOG(.55)-L0G(2.65))*379*392/14
20LETW=W*(1/T-1/379)+L0G(.55)
25LETD=EXP(W)

26REM D=REACTION RATE CONSTANT FOR TEMPERATURE T
30LETS=.1

35LETV=3

A0PRINT"R=";R;"D=";D

45FORX=S TO V STEP S
SO0LETZ=(1-EXP(-D**) )R

55LETY=1-Z

B6OPRINTX:Y

ESNEXTX

70 END

THIS IS THE PROGRAM USED TO COMPUTE THE 135°C CURVE IN FIGURE 6 FROM THE
REACTION RATE CONSTANTS FOR 106° AND 120°C.

724



THIS IS THE PRGGRAM USED TO COMPUTE THE CURVES IN FIGURE 7 FOR TEMPERATURE
A VARIABLE.

SLETR=2

GREM R=NUMBER OF MOLEC.BEING DEACTIVATED
10LETTI=4

15LETS=.5
P2OLETA=(LOG(2.65)-L0G(.55))/(1/393-1/379)
?5LETQ=1

26REM Q IS THE VALUE OF Q SUB I.

30FORX=S TO T1 STEP S

35LETZ=7/6

ANLETW=135

ATREM 7 IS THE TIME TO GO FROM 100°C TO WoC
A5LETW=27 3+

501FX>=Z THEN 70

55LETV=(W-373)/2

60LETT=X*V+373

66REM T IS THE TEMP. AT TIME X

65 GO TO 75

7OLETT=W

75LETB=(1/T-1/379)*A+L0G(.55)
ANLETB=EXP(B)

P1REM B=REACTION RATE CONSTANT FOR TEMP. T
85LETQ=.5*Q*(2-S*S*B*8)/ (1+5*B)
QOLETY=1-(1-Q)4R

25



95PRINTX,Y
TOONEXTX
105 END

THIS IS THE PROGRAM USED TO GENERATE THE CURVES IN FIGURE 7.
TURE PROFILE IS AS FOLLOWS:

W 4o - e - - . -~

in °C

THE TEMPERA-

N_---_..-----.

TIME in hours

26



Fourth order Runge-Kutta approximation for qi(t).

From equation 12,

nh

+
{]

fal
]

q;{(nh)
where h is the step size.

- 5
ey =95 k1/6+k2/3+k3/3+k4/6+0(h )

where

=
[

} = -hk(t,,T(t,))a

n

=
"

, = -hk[t +h/2,T(t +n/2)1[q +k;/2],

=~
[}

3 = -hk[t +h/2,T(t +h/2)1[a +k,/2]3

=
[}

s = -hk[t +h T(t +h)1[a +k,].

k(tn, T(tn) is determined from Equation 9.
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Intuitive basis for Equation 8.

Assume that a molecule may be inactivated by either a first or second order
reaction but not by both. Assume that the probability of reaction of ith order,
i =1, 2, occurring between time t and t + dt is related to the rates at
which the separate reactions occur. Thus we take, o](t), the probability that
first order reaction will occur to be

_klcl( ) Ky

(t) - - (2)
" “kyey (E)-kyley (0017 Ki*kasi () i

Similarly, we set

kol ()7 i (1)

(t) = (b)
2 e (e (T K T 2% ()

For Equation 8, we simplify equations a and b by setting

Py = K/ (kytkony)

and

py = k ur /(k +k2 1)

28
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